
The 127 samples obtained from 8 different microarray 

investigations of human spermatozoa (including our own) gave 

an overall hybridization pattern as shown in Figure 1. As typical 

for the different microarray platforms (Affymetrix, Codelink, 

Agilent, Illumina), a significant difference in the magnitude (y-

value) and dynamic range (length of boxes) is noticable.

The complete microarray dataset was transformed by quantile 

normalization (Figure 2), which normalizes all fluorescence 

values to a common range. This procedure is a prerequisite in 

all common microarray studies. 

However, when analyzing this complete dataset using standard 

clustering methods such as Principle Component Analysis 

(PCA) or Hierarchical Clustering (HCL), one observes that the 

„batch effect“, i.e. the dominant effect of microarray 

platform/laboratory has not been adequately removed: In the 

PCA (Figure 4) as well as in the HCL (Figure 6), the samples are

separated clearly by the platform/study from which they were 

derived.

Contrasting this, a removal of the „batch-effect“ (Figure 3) 

results in a complete mixture of samples in which the effect of 

microarray platform/laboratory has been successfully 

eliminated and is not evident in clustering by PCA (Figure 5) or 

HCL (Figure 7). This modified dataset was used to investigate 

gene expression signatures in respect to potential targets of 

male infertility. 

In a first step, we filtered the top 200 variant genes across all 

127 samples, an approach usually conducted to enrich for 

genes with potential correlation to some outcome without 

imposing a pre-defined grouping structure. Interestingly, the 

most significantly enriched functional category (GO-Terms) 

was „Translation“ (Table 1), consisting mainly of transcripts for 

ribosomal proteins of the large/small ribosomal subunits and 

elongation factors/co-factors. 

In a next step, we filtered differential genes in those samples 

for which data for fertility outcome was available (94 of 127, top 

color bar in Figure 7). By this approach we obtained 383 

transcripts which were highly significant even with the most 

conservative Bonferroni correction (pbonf < 0.05). Clustering 

these genes by PCA resulted in a good separation of the fertile 

(coded in green) and the infertile (coded in red) samples (Figure 

8). Again, a following analysis for functional enrichment of  

these differential genes indicated a prevalent role of 

translation-associated transcripts (Table 2). Consequently, we 

further interrogated a subset of 19 transcripts for ribosomal 

proteins in respect to their correlation with fertility outcome.

Although these genes exhibited a highly differential pattern, the 

data was heterogeneous (Figure 9): while in some 

investigations (UKE, Platts Affy) ribosomal transcripts were 

downregulated, the converse was true for others (Jodar and 

Platts Illumina data).
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The molecular basis of idiopathic male infertility is largely 

unknown. Gene expression profiling of normal and 

pathological human ejaculates/spermatozoa has been shown 

to be a vital tool to identify causes on a molecular level. We 

present a cross-laboratory/cross-platform microarray study 

with gene expression profiles of 127 human 

ejaculates/spermatozoa. Involved are donors/patients 

belonging to different groups in respect to fertility status and

spermiogram parameters (according to WHO guidelines, 

2010). 

25 ejaculates with different outcomes of IVF treatment 

(fertilization rates, pregnancy rates) were collected at the 

Fertility Center Hamburg. RNA was isolated and whole 

genome microarrays (Codelink, 55k) were hybridized. For 

cross-platform analysis, seven sets of raw data from 5 

publications were additionally downloaded from the GEO 

database (NCBI): Platts et al., 2007; Linschooten et al., 2008; 

Lalancette et al., 2009; Pacheco et al., 2011; Jodar et al., 2012.

Overall, this resulted in a final dataset of 127 samples from 8 

investigations, 6 laboratories and 5 microarray platforms.

All data were background corrected, log-transformed and 

quantile normalized (Affy package, Bioconductor). Datasets 

were merged by a set of 13751 EntrezID’s present in all 

platforms. In case of multiple probes targeting one EntrezID, 

the one with highest MAD (Median absolute deviation) was 

chosen. Batch effects were eliminated using the ComBat

package for the R statistical programming language. 

Go_Term (BP_FAT) p.value p.Bonferroni Genes

Translation 6.1E-09 9.4E-06

EEF1A1, MRPS15, COPS5, RPL35, RPL27, RPL24, RPS6, RPS3, GSPT1, 

RPS16, RPS3A, RPL13A, RPL6, EIF4A2, EIF3E, RPS14, GSPT2, RPL3, 

RPL4, RPL7A

Response to Inorganic Substance 5.4E-04 5.6E-01
AQP9, DUSP1, TFRC, HMOX1, GPX4, ANXA11, NDRG1, MT1H, CALM2, 

SOD2

Negative Regulation of Transcription Factor Activity 1.6E-03 9.2E-01 FOXJ1, HMOX1, NFKBIA, RPS3, TRIB1

Cell Cycle 2.9E-03 9.9E-01

MAEA, RABGAP1, IL8, ANXA1, RPL24, MLF1, SESN3, KIF2B, CCNB2, 

PSMA6, DUSP1, GSPT1, NSL1, PSMC2, GSPT2, G0S2, PPP1R15A, 

CALM2, CCAR1

Response to Metal Ion 3.4E-03 9.9E-01 AQP9, DUSP1, TFRC, ANXA11, NDRG1, MT1H, CALM2

Inflammatory Response 3.9E-03 1.0E+00
CEBPB, S100A8, IL8, TFRC, CD44, CCL20, CXCR4, HMOX1, ANXA1, 

NFKB1, ITCH
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Fig. 1: Quantile normalized

per platform 

Fig. 2: Quantile normalized all samples Fig. 3: Batch-effect removal

Fig. 4: PCA Fig. 5: PCA

Fig. 6: HCL Fig. 7: HCL

Fig. 8: PCA Fertile vs. Infertile

Fig. 9: Ribosomal Transcripts,

Fertile (F) vs. Infertile (IF)

Table 1: Top-variant categories

Table 2: Top categories Fertile vs. Infertile
GO_Term (BP_FAT) Count % p.value p.Bonf. Genes

Translation 21 16.9 7.0E-14 5.9E-11
EEF1A1, MRPS15, COPS5, NARS, RPL27, RPL24, RPS6, KARS, RPS3, EIF4G3, RPL32, 

RPS3A, RPLP0, EIF3E, RPL3, EIF3L, RPS13, RPL5, RPL4, RPL7A, UBA52

Ubiquitin-Dependent Protein Catabolic 

Process
10 8.1 4.2E-05 3.4E-02 PSMB7, PSMB1, UBE3A, PSMC2, SKP1, TCEB1, CUL4B, UBA52, BUB3, CUL1

Ribosome Biogenesis 6 4.8 1.5E-03 7.2E-01 RPLP0, RPL5, RPL24, RPL7A, RPS6, NSA2

Fertilization 5 4.0 2.1E-03 8.3E-01 PLCZ1, ZPBP, SMCP, KLHL10, SPA17

Glucose Metabolic Process 6 4.8 4.1E-03 9.7E-01 LDHC, LDHA, PDK4, PDHA2, PRKAA1, PPP1CC

Binding of Sperm to Zona Pellucida 3 2.4 5.9E-03 9.9E-01 ZPBP, SMCP, SPA17

Cell Cycle 13 10.5 6.7E-03 1.0E+00
CCNH, RPL24, SKP1, PPP1CC, SESN3, PSMB7, PSMB1, PSMC2, CUL4B, BUB3, CUL1, 

UBA52, CALM2

Ribonucleoprotein Complex Biogenesis 6 4.8 8.0E-03 1.0E+00 RPLP0, RPL5, RPL24, RPL7A, RPS6, NSA2

Single Fertilization 4 3.2 8.1E-03 1.0E+00 PLCZ1, ZPBP, SMCP, SPA17

Cell-Cell Recognition 3 2.4 8.2E-03 1.0E+00 ZPBP, SMCP, SPA17

Hexose Metabolic Process 6 4.8 1.0E-02 1.0E+00 LDHC, LDHA, PDK4, PDHA2, PRKAA1, PPP1CC

Negative Regulation of Neuron 

Differentiation
3 2.4 2.1E-02 1.0E+00 CNTN4, CD24, TTC3

Sexual Reproduction 8 6.5 3.8E-02 1.0E+00 PLCZ1, ZPBP, SMCP, KDM3A, SPATA4, KLHL10, SPA17, TBPL1References:
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Conclusions and Perspectives
When merging datasets from different microarray

platforms/laboratories the main challenge is to overcome non-

biological technical bias while keeping an optimum of 

biological information. By eliminating this “batch-effect”, we 

were able to extract vital information in respect to fertility 

outcome from a cohort of 94 samples that were derived from 

different investigations. The results suggest that the ribosomal 

compartment may play an essential role in disturbing the 

fertility outcome, which tallies with our observations on the 

rRNA level (Cappallo-Obermann et al., 2011).


